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Abstract: Spin-orbit coupling (SOC) calculations are performed along the reaction pathway of the oxidation process,
FeO+ + H2 f Fe+ + H2O (eq 1). Selection rules are derived for SOC between different spin situations, and are
applied to understand the computed SOC patterns along the oxidation pathway, and their relationship to the electronic
structure of the various species. The process involves two spin inversion (SI) junctions between sextet and quartet
states: near the FeO+/H2 cluster at the entrance channel, and near the Fe+/H2O cluster at the exit channel. The
sextet-quartet SOC is significant at the reactant extreme (for FeO+), but decreases at the FeO+/H2 cluster and
continues to decrease until it becomes vanishingly small between the6D-4F states of Fe+ at the product extreme.
The results show that while the quartet surface provides a low-energy path, the SI junctions reduce the probability
of the oxidation process significantly. In agreement with the deductions of Armentrout et al.,2c the poor bond activation
capability of the6D ground state of Fe+ in the reverse reaction is accounted for by the inefficient6D-4F state
mixing due to the expected poor SOC between the respective 4s13d6 and 3d7 configurations. On the other hand, the
4F excited state of Fe+ can activate H2O more efficiently since it can lead to the insertion intermediate4(HFeOH+)
in a spin-conserving manner. Other findings of Schwarz et al.1,2aand Armentrout et al.2c,d are discussed in the light
of the SOC patterns. The importance of the SOC at the exit channel is highlighted by comparing the product
distribution of the reaction (eq 1) with analogous reactions of MO+ species: when the ground state M+ has a 4s13dn-1

(Fe+, Mn+) electronic structure as opposed to those cases where the ground state electronic structure is 3dn (Co+,
Ni+) and where no spin inversion is required. Predictions based on the understanding of the SOC patterns are made
and compared with appropriate experimental data.

Introduction

Gas-phase C-H/C-C bond activation by “bare” oxo-transi-
tion-metal cations (MO+)1 has generated intriguing patterns2

which seem to reflect the interplay of classical factors, e.g.,
barrier heights with spin-inversion (SI) bottlenecks due to the
crossing of surfaces of different spin multiplicities.3 A typical
example is the oxidation of H2 by FeO+ (6Σ+) in eq 1, which
has been studied mechanistically by the Berlin2a and Utah2c

groups. Despite the high exothermicity of the process (∆H )
-36 kcal/mol), its seemingly spin-conserving nature, and the
absence of any unusual orbital restrictions, the process is
nonetheless inefficient and occurs only once in every 100-
1000 collisions.1,2a,c The reactions of CoO+ and NiO+ which
are more exothermic are even less efficient.2b,d

Figure 1, which shows schematically the potential energy
curves2e,cfor the reaction, reveals a possible origin of the prob-

lem. The reaction starts at the reactant (R) entrance channel
on a surface with a sextet spin multiplicity and changes over to
a quartet insertion intermediate,4I (HFeOH+). Since the ground
state of the Fe+ product is6D, another SI junction exists at the
exit stage of the reaction. As such, the transformation in eq 1
exhibits a two-state reactivity having both barriers and SI junc-
tions along the way.2c,e,3,4 Thus, on the one hand,the quartet
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FeO+(6Σ+) + H2 f Fe+ (6D) + H2O (1) Figure 1. A schematic potenial energy profile for the reaction in eq
1. For computational details of energies (in kcal/mol) and structures
see refs 2e and 21. The dashed lines indicate areas unexplored
computationally.
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surface proVides a low-energy path which enables bond acti-
Vation, but on the other hand the poor efficiency of the reaction
may well originate in the probability to cross the SI junctions.
The pioneering studies of Armentrout et al.2d,4 have empha-

sized that a necessary condition for an efficient reaction like eq
1 is that the MO+ species will possess a suitable electronic
structure which permits a spin-allowed (spin-conserving) reac-
tion. The reactivity consequences of spin conservation have
been demonstrated by elegant studies of Armentrout et al.4 and
Weisshaar et al.,5 who showed that C-C/C-H bond activation
by metal cations, M+, isstate selectiVeand proceeds much more
efficiently from those M+ states which can form the insertion
intermediates RMH+ in a spin-conserving manner. Thus, the
6D ground state of Fe+ reacts sluggishly with RH species, in
comparison with the lower-spin excited state, Fe+(4F), which
correlates efficiently in a spin-conserving manner to the insertion
intermediates4(RMH+). Similar differences are observed for
bond activation by V+ for which the low-spin3F excited state
is 270 more efficient toward ethane than the5D ground state.4e,5e

Further, it has been concluded4e,5d,e that the exalted bond
activating capability of the low-spin excited states is not
associated with the excess energy of the excited state5d but rather
with its spin multiplicity match with the insertion intermediate.
These results imply therefore that the spin conservation is a
crucial ingredient in C-H and H-H activation by first-row
transition-metal species.
This interplay of reactivity factors may be generally expected

for reactions of coordinatively unsaturated transition-metal
compounds which often possess high-spin ground states and
nearby low-spin excited states.6 As a result of the state
adjacency and the better bonding capability of the low-spin
states, the different spin states intersect3,4a,5eand generate SI
junctions. Indeed the reactivity of coordinatively unsaturated
MLn species and bare metal ions7 is marked by crossings of
different spin situations. For example, recent calculations7b

show that in the reaction of Fe+ with C2H6 there exists an SI
junction at the entrance channel (formation of clusters), while
barriers at the exit channel dominate and thereby affect the
product distribution. Therefore, to conceptualize reactivity
patterns as a whole, it is essential to achieve understanding of
factors which affect the passage of such SI junctions, between
different spin situations.
Whether a SI junction may or may not act as a bottleneck

depends,inter alia, on the degree of mixing of the spin situations
which intend to cross. The principal mechanism which mixes
the two spin states and provides probability of crossover of the
SI junction is spin-orbit coupling (SOC).8 As such, the
knowledge of SOC as a function of structure is a prerequisite

to the understanding of the potential role of SI. Despite the
important qualitative understanding of SOC patterns in singlet-
triplet9 and in a variety of other spin situations,10 the topic as a
whole remains among the least understood chemical effects.
Consequently, the principal aim of the present paper is to
establish guidelines and qualitative rules necessary to understand
the SOC patternsbetween different spin situations, as a function
of geometry and electronic structure. This will be attempted
by combining a detailed quantum chemical calculation of SOC
factors along with a qualitative analysis of these factors in the
activation of H2 by FeO+ described in eq 1.
The first part of the paper describes the computational results

of SOC factors for a few critical species on the reaction pathway
of Figure 1. These results are obtained by use of the one-
electron method11a,bwhich has been applied successfully to main
elements as well as to heavy transition metal species.11c The
second part of the paper derives the selection rules needed for
the analysis of the computational trends. Our approach relies
on the phenomenological SOC Hamiltonian8a,bcompatible with
the approximate expression in eq 2. As such, our analysis draws
on and has complementary aspects to the general treatment of
SOC by Lefebvre-Brion and Field8aand the work of Peyerimhoff
et al.10a Finally, the SOC matrix elements will form a basis
for a discussion of the possible role of the SI junction in the
overall poor efficiency of the bond activation process in eq 1.

Methods

Treatments of SOC involving the full Breit-Pauli Hamiltonian have
been developed by several groups9e-g,10a-k and applied to diatomic
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molecules, radicals, and diradicals. The CPU consumption of these
calculations is often high. To circumvent the problem, Koseki, Schmidt,
and Gordon11a,b have implemented a semiempirical procedure which
relies on the one-electron part8 of the spin-orbit Hamiltonian,HSO in
eq 2,

whereL iK andSi are the orbital and spin angular momentum operators
for an electron (i) in the framework of the nuclei, indexed byK. To
account for the missing two-electron part of the Hamiltonian, the nuclear
chargeZK is replaced by an effective parameter,ZK*, which can be
taken as the screened nuclear charge.8a

The effectiveHSO operator is used in this study to calculate SOC
matrix elements between pairs of zero-order spin states which corre-
sponds to the sextet and quartet spin situations which cross over in
Figure 1. The spin states are themselves described by MCSCF wave
functions of the FORS (full optimized reaction space)12 type. This
method is implemented in the GAMESS suite of programs13 which
has been utilized throughout this study. The MCSCF wave functions
for the sextet and quartet states of FeO+ and [Fe,O,H2]+ species involve
an active space of 13 electrons in 11 orbitals; the latter include the
valence 4s and 3d orbitals of Fe, the 2s and 2p orbitals of O, and the
1s orbital of H.
For Fe we use an all-electron basis set [8s 4p 2d] contracted from

the primitive (14s 9p 5d) basis set of Wachters.14 This basis set was
supplemented with one set of p (R ) 0.115) and one set of d (R )
0.1133) diffuse functions. For oxygen and hydrogen we used respec-
tively the Dunning-Hay15 double-ú basis set [4s 2p]/(9s 5p) and (4s)/
[2s] based on the primitive sets of Huzinaga.16

Calibration of the SOC Constant for Fe+. To test the method
against some experimental situation, we applied it to the6D ground
state of Fe+, where the SOC is a diagonal matrix element within the
space of the 30 spin-orbit substates8a nascent from five spatially
degenerate 4s13d6 configurations.17a The resulting multiplet splitting
matches the expected Lande´ interval splitting pattern.8d Employing
the actual nuclear charge,Z ) 26, the SOC Hamiltonian leads to a
splitting which is 1.844 times the experimental value,18 and an Fe+

atomic constant of∼750 cm-1, larger than the accepted value19 of 416
cm-1. This is anticipated from the analysis of Koseki, Schmidt, and
Gordon11a,bof the effect of the nuclear charge on SOC parameters. Using
Z* ) Z/1.844 gives an accurate value of the total SOC splitting 977.35

cm-1 and an atomic constant of 407.23 cm-1 by construction in accord
with the experimental18,19values of 977.03 and 416 cm-1, respectively.
The intervals between theJ levels are, in cm-1, 366.51 (384.77), 285.06
(282.87), 203.6 (194.99), and 122.17 (114.40); the parenthetical values
are the experimental intervals. The agreement is seen to be good albeit
not perfect, likely because the experimental multiplet is distorted slightly
by second-order SOC. The sameZ* reproduces the multiplet splitting
of the4D (4s13d6) and4F (3d7) states of Fe+, within the errors expected
from distortions of the experimental multiplets by second-order SOC.
It is important to note that the state averaging leads to a4F state which
is too high in energy compared with experiment (the experimental
energy gap relative to6D is 0.25 eV while the computed gap is 1.8
eV). The4D state’s energy on the other hand is properly handled (the
experimental energy gap relative to6D is 1.0 eV while the computed
gap is 1.2 eV). The energy discrepancy, however, does not affect the
SOC matrix elements. TheZ* values of Fe and O (see ref 11a for
Z*(O)) were used in all subsequent calculations.
The study of the remaining [Fe,O,H2]+ species focuses on the

evaluation of off-diagonal matrix elements between the spatially
different spin situations, sextet and quartet, which occur at the SI
junctions in Figure 1. The MCSCF routine is able to handle only
Abelian point groups, and therefore it was necessary to carry out the
calculations for FeO+(C∞V) at theC2V point group. In theC∞V point
group, the states of FeO+ involve occupation inπ andδ orbitals (see
Figure 2 later) which are eigenfunctions of the angular momentum,lz,
operator and are given by the complex linear combinations of the
corresponding Cartesian orbitals. As such, each angular momentum
state, with the exception of the high-spin state6Σ+, gives rise to two
species of different symmetries10a,d,ein C2V. For example, both the4Φ
and4Π states of FeO+ transform inC2V into combinations of4B1 and
4B2 (see Figure 2 later) species. Consequently, some state contamina-
tion may lead to erroneous SOC results, due to mixing of CSF’s of
different angular momentum species. To avoid this, we used a very
tight convergence criterion to obtain an accurate wave function.17b To
eliminate further pitfalls, the computations were carried out both at
theC2V as well as at theCspoint groups, so that the SOCmatrix element
is double checked. In each point group, it was also ascertained that
the two symmetry species nascent from a given angular momentum
state (e.g.,4B1 and4B2 or 4A′ and4A′′ for the angular momentum4Π
state) possess the exact same energy and SOC matrix element with the
6A1 (6A′) sextet state. This extra caution is required to ensure that the
SOC results for the various critical species in Figure 1 are not
consequences of errors in the wave function.
The orbital averaging procedure17a was utilized also for the Fe+‚‚‚

(OH2) cluster in which the Fe+ orbitals are only slightly perturbed.
For all other species in the study, the state averaging produced small
SOC matrix elements, while when the optimized orbitals of the lowest
state were used for the SOC evaluation the resulting matrix elements
were somewhat larger. We therefore report only these latter matrix
elements, so that our SI probabilities are overestimated somewhat.
When optimized orbitals were used to evaluate SOCmatrix elements,

the calculations involve the following three steps: (i) An ROHF
calculation is performed for each spin species, at the geometries
corresponding to the critical points in Figure 1 (geometries in Scheme
1). (ii) The ROHF orbitals are used then to generate the MCSCF wave
function of the appropriate symmetry. (iii) The SOC calculation is
performed between pairs of CI wave functions: one belonging to the
sextet state and the other to the quartet state. Since the SOC calculation
requires a common set of core orbitals, the orbitals of the lowest spin
state (from full optimized reaction space (FORS) MCSCF calculation)
were used to generate both spin states for the SOC calculation. The
same procedure was used for evaluating SOC in the atomic situations
with the exception of the cases which involve the4F state (Tables 3
and 4). In the latter cases, the core orbitals of4F were replaced with
those of6D, and the active orbitals were reoptimized. The6D-4F SOC
involved therefore two sets of orbitals which differ in their active part.
Identification of the symmetry species associated with a given

angular momentum state relied on the projection procedure used by
Hiberty and Leforestier20 to obtain VB determinants from MO

(12) Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M.; Elbert, S. T.Chem.
Phys.1982, 71, 51.

(13) GAMESS-USA, Revision Feb. 1995; Schmidt, M. W.; Baldridge,
K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.;
Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.;
Montgomery, J. A.; see e.g.: Schmidt, M. W.; Baldridge, K. K.; Boatz, J.
A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.;
Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A.J.
Comput. Chem.1993, 14, 1347.
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Schmidt from Iowa State University. To obtain the five degenerate
configurations, an initial GVB calculation is performed for the5D term of
neutral Fe, using a Hu¨ckel guess with orbital reordering (IORDER(10))
15, 10, 11, 12, 13, 14). Standard values for the fractional occupations and
coupling coefficients are employed as recommended in the GAMESS13

manual. The resulting GVB wave functions for Fe are then subject to a
state averaged MCSCF calculation, leading to five averaged states of the
type 4s23d6. These averaged states are subsequently used for Fe+ as an
initial guess in an averaged MCSCF calculation of the6D term. The use of
C1 symmetry in $DRT ($DRT GROUP)C1 FORS).T. NMCC)9 NDOC)1
NALP)5 $END) ensures that all five spatial configuration state functions
(CSF’s) are kept in the CI function and their density averaged in order to
obtain five spatially degenerate components of the6D multiplet. The spin-
orbit coupling CI code subsequently uses all the possible sextet spin
functions of the five spatial wave functions (use GROUP)C1), resulting
in a 30× 30 matrix for the SOC-CI Hamiltonian. (b) This is done by
increasing the convergence criterion for the Davidson eigenvector routine
(CVGTOL)1.0E-10) in the GUGDIA group in the GAMESS-USA 95
program.13
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determinants. Here we expanded the angular momentum determinants,
based on complex orbitals, into linear combinations of symmetry-
adapted determinants based on real orbitals.
A typical SOC calculation for the target species involves between

8 000 and 30 000 CSF’s and takes on the average, depending on the
point group symmetry, 10-100 CPU hours on an IBM RS-6000/590
Workstation with 256MB RAM.

Results

The SOC calculations for the process in eq 1 were performed
using the Berlin group’s2e,21optimized geometries (Scheme 1)
for the critical species which occur along the reaction path in
Figure 1. Since we are interested in the pairwise SOC
interactions which lend probabilities to crossovers between
sextet and quartet states, we calculated for each molecular
species the following SOC matrix element:

A. FeO+. The MO scheme for the6Σ+ state is shown in
the left side of Figure 2 using the leading configuration of the
MCSCF wave function. The orbital block in the frame is
quasidegenerate2e and involves theδ orbitals which are pure
d-AO’s on Fe, the 2π orbitals which are antibonding FeO+

MO’s made from Fe(dπ)-O(pπ) combinations, and finally, the
3σ orbital which is largely a hybrid on Fe of the type dz2-s-p.
Orbital excitations within the quasidegenerate manifold lead to
a few low-lying quartet states having angular momentaΛ ) 0,
1, 2, 3, and 4 (labeled asΣ, Π, ∆, Φ, andΓ). The energy
ordering of these states based on results by Berlin’s group2e,22

is shown on the right-hand side of Figure 2, where in parentheses

we indicate theC2V symmetry species contributed by each
angular momentum state.10a,d,e It is apparent that when the
angular momentum quantum number is different from zero, the
corresponding state gives rise to twoC2V symmetry species.
Thus, for example, by calculating the various MCSCF roots
for 4B2 and4B1 state symmetries, it is possible to pair up the
two particular components which make up the4Π state, as well
as those two components which make up the4Φ state, and so
on. Calculating, then, all the possible SOC matrix elements,
types〈6A1|HSO|4B1,2〉, and rechecking them by performing the
calculations at theCs point group, enabled us to verify the SOC
assignments which are collected in Table 1. The effect of the
substate splitting of the higher angular momentum states on the
SOC matrix elements with6Σ+ was not considered.
Recalling that the internuclear Fe- - -O axis is thez axis (in

the appropriate point group) we note four trends in Table 1: (i)
The only states which yield nonvanishing SOC with6Σ+ are
4Π and 4Σ-. (ii) The 6Σ+/4Π coupling leads tox and y
components (perpendicular to the molecular axis) of the SOC
matrix element, while the6Σ+/4Σ- coupling leads to az

(20) Hiberty, P. C.; Leforestier, C.J. Am. Chem. Soc.1978, 100, 2109.
(21) Fiedler, A.; Hrusak, J.; Schwarz, H.Z. Phys. Chem.1992, 175, S15.
(22) Fiedler, A.; Hrusak, J.; Koch, W.; Schwarz, H.Chem. Phys. Lett.

1993, 211, 242.

Scheme 1

〈HSO〉 ) 〈6Ψ1|HSO|4Ψ2〉 (3)

Figure 2. Molecular orbital (MO) scheme for the6Σ+ state of FeO+

(left-hand side) and the corresponding state ordering (right-hand side).

Table 1. SOC Matrix Elements (in cm-1) between6Σ+ and Some
Quarted States,4Λ, of FeO+ a

quartet
state

orbital
occupancyb 〈HSO〉r 〈S1 ) 5/2; Ms1|S2 ) 3/2; Ms2〉c,d

4Φ 1δ32π13σ1 r ) x, y, z 0
4Π 1δ32π13σ1 r ) x, ye 〈5/2|3/2〉 ) -178

〈1/2|3/2〉 ) 56
〈3/2|1/2〉 ) -138
〈-1/2|1/2〉 ) 98
〈1/2|-1/2〉 ) -98
〈-3/2|-1/2〉 ) 138
〈-1/2|-3/2〉 ) -56
〈-5/2|-3/2〉 ) 178

4∆1 1δ32π3 r ) x, y, z 0
4∆2 1δ22π23σ1 r ) x, y, z 0
4Γ 1δ22π23σ1 r ) x, y, z 0
4Σ- 1δ22π23σ1 r ) z 〈3/2|3/2〉 ) -179

〈1/2|1/2〉 ) -220
〈-1/2|-1/2〉 ) -220
〈-3/2|-3/2〉 ) -179

a The bond length for FeO+ is given in Scheme 1. The axes
assignments are given in Figure 2. Accuracy here and elsewhere is
(1 cm-1. b These are angular momentum (complex) orbitals.c All
matrix elements were verified also at theCs point group symmetry
between6A′ and4A′′, 4A′ states.d The atomic constantúFe+ of Fe+ is
calculated to be 407.3 cm-1. eOnly thex component is shown. They
component has the same absolute value with opposite sign.
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component along the molecular axis. (iii) Thex, y components
couple spin-sublevels (substates), which differ by(1 units from
the Ms quantum number, while thez component couples
substates with∆Ms ) 0. (iv) The SOC matrix elements are
significantly smaller than the atomic constant of Fe+.
B. FeO+‚‚‚H2; 4,6CR and 4,6TS. The interaction of FeO+

with H2, to form the clusters CR of Figure 1, lifts the
degeneracies in the 1δ and 2π orbital subsets in Figure 2, and
leads also to intermixing among the 3σ, 1δ, and 2π orbitals.
As long as the intermolecular distances are sufficiently large,
the quasidegeneracy of this orbital block is retained and the
ground state is the sextet (Figure 1). As the FeO+‚‚‚H2 distance
decreases and stronger orbital mixings ensue, the quartet state
becomes the ground state.2e Clearly, somewhere in between
the clusters CR and the TS’s, the two spin states cross one
another. Finding the seam of the crossing points of the two
states at the CASPT2 level,23 which is the level used at the
original study,2e is too complicated, and may even be irrelevant
since under gas-phase conditions the system will not necessarily
invert the spin at the lowest energy crossing point. Thus, we
calculated the SOC patterns at the four geometric structures,
corresponding to the two CR’s and the two TS’s (Scheme 1),
with the expectation that these limits will provide us a reasonable
clue on the variation or lack thereof of the SOC matrix element
in the region of the crossing. These corresponding sextet-
quartet SOC matrix elements are collected in Table 2.
Entries 1-4 show the SOC matrix elements between the6A1

ground state of the6CR cluster (Figure 1) and the four lowest
lying quartet states,4B1, 4B2, 4A2, and4A1. A few trends are
apparent and were verified by repeating the SOC calculations
at theCs point group symmetry: (i) The6A1 state couples with
4B2, 4B1, and 4A2, giving rise respectively to in-planex,y
components and a perpendicularzcomponent of the SOCmatrix
element. The coupling with the4A1 state is zero. (ii) By
analogy to the trends in Table 1, here too thex andy components
couple substates which differ by∆Ms ) (1 in their magnetic
quantum numbers, while thezcomponent couples substates with
∆Ms ) 0. (iii) Comparison of Table 2 to Table 1 (and later to
Table 3) shows that irrespective of the magnitude of the
individual SOCmatrix elements, their ratios are constants typical
of the x,y or z components. For thex,y components there are
four unique SOC elements with ratios of 1:0.31623:0.7750:
0.5477, in respective order, while for thezcomponent the ratios
for the unique elements are 1:1.2247.
At the geometry of the4CR cluster, the ground state is4A′′

and the first sextet state is6A′. Now, thezaxis is perpendicular
to the molecularx,y plane. The calculated SOC matrix element
was restricted now to the two lowest spin states and is given in
entry 5 in Table 2. Entry 6 shows the6A′/4A′′ coupling at the
geometry of the6TS, while entry 7 gives the same coupling
type for the geometry of the4TS species, the latter being the
lowest TS for the bond insertion step (Figure 1). In entries
5-7, the coupling involves in-planex,y components and couples
substates with∆Ms ) (1.
By comparing the SOC matrix elements in Tables 1 and 2, it

is apparent that they undergo a gradual reduction, in the order
SOC[R(FeO+)] > SOC[CR(FeO+/H2)] > SOC[TS(FeOH2+)].
C. The Exit Channel: Fe+‚‚‚OH2 (4,6CP) and Fe+ (6D, 4F,

and 4D). The ground state of the product cluster CP Fe+‚‚‚
OH2 is either6A2 or 6A1.21,24 In accord with previous results,21

the two states were found to be extremely close (0.3 kcal/mol).

Two higher sextet states of6B1 and6B2 symmetry lie 3-5 kcal/
mol above the ground states, while a second6A1 state lies still
9.2 kcal/mol above the ground states. The d-type orbitals of
the complex resemble those in Fe+, albeit with a small admixture
of the oxygen’s orbitals. As such, the five spatial sextet states
can be traced to the degenerate 4s13d6 configurations in the free
Fe+. Indeed by analogy to the6D state of Fe+, here in Fe+‚‚‚
OH2 too, there is SOCwithin the sextet manifold. This results
in a mixing of the two degenerate ground state configurations
6A1 and6A2, so that for all purposes the ground sextet state has
a mixed6A1,2 character. Thus, in Table 3 the sextet state (see
the column state 2) is represented by the mixed6A1,2 situation.
Above the sextet manifold we find 12 quartet states of4A2,

4A1
4B2, and4B1 spatial symmetries. These states are nascent

from the 4F (3d7) and 4D (4s13d6) atomic states of Fe+. The
lowest states, of4A2, 4A1 symmetries, were traced to the4D
atomic situation (4s13d6) of Fe+. These states as well as the
lowest4B2 and4B1 states are indicated therefore in Table 3 as
“4D” (see the column state 1) to emphasize their atomic ancestry.
Still higher in energy we find seven quartet states which could
be traced to the4F atomic state of Fe+ (3d7), and as such are
indicated in Table 3 as “4F” states. As mentioned already, our
calculations underestimate the stability of the4F state, and this

(23) Andersson, K.; Malmqvist, P.-A° .; Roos, B. O.J. Phys. Chem.1992,
96, 1218. Andersson, K.; Malmqvist, P.-A° .; Roos, B. O.; Sadlej, A. J.;
Wolinski, K. J. Phys. Chem.1992, 94, 5483.

(24) Rosi, M.; Bauschlicher, C. W., Jr.J. Chem. Phys.1989, 90, 7264;
1990, 92, 1876.

Table 2. SOC Matrix Elements (in cm-1) in the FeO+/H2 Clusters
(CR) and Transition States (TS) for the Bond Insertion Stepa

entry state 1 state 2b 〈HSO〉r 〈S1 ) 5/2; Ms1|S2 ) 3/2; Ms2〉
1 6CR; 6A1

4B2 r ) x 〈5/2|3/2〉 ) 121
〈1/2|3/2〉 ) -38
〈3/2|1/2〉 ) 94
〈-1/2|1/2〉 ) -66
〈1/2|-1/2〉 ) 66
〈-3/2|-1/2〉 ) -94
〈-1/2|-3/2〉 ) 38
〈-5/2|-3/2〉 ) -121

2 6CR; 6A1
4A2 r ) z 〈3/2|3/2〉 ) 64

〈1/2|1/2〉 ) 79
〈-1/2|-1/2〉 ) 79
〈-3/2|-3/2〉 ) 64

3 6CR; 6A1
4B1 r ) y c

4 6CR; 6A1
4A1 r ) x, y, z 0

5 4CR; 4A′′ 6A′ r ) x, y 〈5/2|3/2〉 ) -87; 49
〈1/2|3/2〉 ) 27;-16
〈3/2|1/2〉 ) -67; 38
〈-1/2|1/2〉 ) 47;-27
〈1/2|-1/2〉 ) -47; 27
〈-3/2|-1/2〉 ) 67;-38
〈-1/2|-3/2〉 ) -27; 16
〈-5/2|-3/2〉 ) 87; 49

6 6TS; 6A′ 4A′′ r ) x, y 〈5/2|3/2〉 ) -46; 65
〈1/2|3/2〉 ) 15;-21
〈3/2|1/2〉 ) -36; 51
〈-1/2|1/2〉 ) 25;-36
〈1/2|-1/2〉 ) -25; 36
〈-3/2|-1/2〉 ) 36;-51
〈-1/2|-3/2〉 ) -15; 21
〈-5/2|-3/2〉 ) 46;-65

7 4TS; 4A′′ 6A′ r ) x, y 〈5/2|3/2〉 ) 44;-84
〈1/2|3/2〉 ) -14; 26
〈3/2|1/2〉 ) 34;-65
〈-1/2|1/2〉 ) -24; 46
〈1/2|-1/2〉 ) 24;-46
〈-3/2|-1/2〉 ) -34; 65
〈-1/2|-3/2〉 ) 14;-26
〈-5/2|-3/2〉 ) -44; 84

a The SOC matrix element (eq 3) is determined at the geometry
corresponding to the species specified as “state 1”. The geometries
are given in Scheme 1.b Entries 1-3 were verified also in theCs point
group symmetry.c Entry 3 has the same absolute values of SOC matrix
elements as in entry 1 but with opposite signs.
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deficiency carries over to the Fe+‚‚‚OH2 complex. The more
elaborate calculations by Rossi et al.24 show that the lowest
quartet states of Fe+‚‚‚OH2 are4A2 and4A1 which are nascent
from the4F atomic situation, albeit with some mixing from4D
and other atomic states. This blend of the atomic situations in
the Fe+‚‚‚OH2 complex reflects the hybridization of the 4s and
dz2 orbitals (and to some extent 4pz and dx2-y2) in the presence
of the H2O ligand in the complex. The states within the quartet
manifold mix among themselves via the SOC operator in
complete analogy to the atomic situations4D and4F.
The SOC interactions within the same spin manifolds do not

mix any quartet and sextet states. The requisite sextet-quartet
SOC interactions for Fe+‚‚‚OH2 are collected in Table 3. To
save space, we show only the SOC interactions of the sextet
ground state(s)6A1,2with quartet states from the “4D” and “4F”
manifolds. The vanishing matrix elements are between states
of identical spatial symmetry. All other situations lead tox,y
or z components of SOC, by analogy to the preceding cases in
Tables 1 and 2.
Focusing on the SOC interaction of6A1,2with the4A1,2quartet

ground states of the “4D” and “4F” manifolds (entries 1,2 and

5,6 in Table 3), it is seen that the SOC matrix elements are
either small (entries 1,2) or vanishingly small (entries 5,6). While
the small size of these matrix elements may appear surprising,
Table 4 shows that the same situation occurs for the sextet-
quartet SOC in the free Fe+. Thus, entries 1 and 2 in Table 3
are of the same order as those in entries 1,2 in Table 4 between
6D (4s13d6) and the4D (4s13d6) atomic states, while entries 5
and 6 in Table 3 are similar to entries 5 and 6 in Table 4 for
the 6D (4s13d6)-4F (3d7) SOC. We may therefore conclude
that the SOC interactions between the sextet and quartet ground
states (6A1,2 with 4A1,2) for Fe+‚‚‚OH2 resemble the patterns
found for the parent atomic states of Fe+. Moreover, as we
approach the free Fe+, the sextet-quartet SOC interaction
gradually decreases until it reaches nearly zero between the
ground state,6D, and the first excited state,4F, of Fe+.

Discussion

A. Patterns of SOC Matrix Elements. The above results
show that the sextet-quartet SOC matrix elements are highly
anisotropic, depending on symmetry as well as on the match-
up situation of the substates of the two spin states, and with
different selectivities for the in-planex,y and perpendicularz
components of the SOC. The ratios of the SOC elements for
the different pairs of substates are constants, typical of thex,y
andz components, and carry over irrespective of the identity

Table 3. Selected SOC Matrix Elements (in cm-1) in the Fe+/OH2

Cluster (6Cp) at the Elimination Stepa,b

entry state 1 state 2 〈HSO〉r 〈S1 ) 5/2; Ms1k|S2 ) 3/2; Ms2k′〉c-e

1 6A1; 6A2 “4D”; 4A2 r ) z 〈3/2|3/2〉 ) 79; 0
〈1/2|1/2〉 ) 96; 0

2 6A1; 6A2 “4D”; 4A1 r ) z f

3 6A1; 6A2 “4D”; 4B2 r ) x; y 〈5/2|3/2〉 ) -49;-39
〈1/2|3/2〉 ) 15; 12
〈3/2|1/2〉 ) -38;-30
〈-1/2|1/2〉 ) 27; 21

4 6A1; 6A2 “4D”; 4B1 r ) y; x 〈5/2|3/2〉 ) -32; 39
〈1/2|3/2〉 ) 10;-12
〈3/2|1/2〉 ) -25; 30
〈-1/2|1/2〉 ) 18;-21

5 6A1; 6A2 “4F”; 4A2 r ) z 〈3/2|3/2〉 ) -5; (0)
〈1/2|1/2〉 ) -6; (0)

6 6A1; 6A2 “4F”; 4A1 r ) z g

7 6A1; 6A2 “4F”; 4B2 r ) x; y 〈5/2|3/2〉 ) -8; 53
〈1/2|3/2〉 ) 3;-17
〈3/2|1/2〉 ) -6; 41
〈-1/2|1/2〉 ) 4;-29

8 6A1; 6A2 “4F”; 4B1 r ) y; x 〈5/2|3/2〉 ) -45;-27
〈1/2|3/2〉 ) 14; 9
〈3/2|1/2〉 ) -35;-21
〈-1/2|1/2〉 ) 25; 15

9 6A1; 6A2 “4F”; 24A2 r ) z 〈3/2|3/2〉 ) -2; 0
〈1/2|1/2〉 ) -3; 0

10 6A1; 6A2 “4F”; 24B2 r ) x; y 〈5/2|3/2〉 ) 69; 26
〈1/2|3/2〉 ) -22;-8
〈3/2|1/2〉 ) 53; 20
〈-1/2|1/2〉 ) -38;-14

11 6A1; 6A2 “4F”; 24B1 r ) y; x 〈5/2|3/2〉 ) 40;-64
〈1/2|3/2〉 ) -13; 20
〈3/2|1/2〉 ) 31;-49
〈-1/2|1/2〉 ) -22; 35

a The geometry of6Cp is given in Scheme 1.b “ 4D” means that the
electronic structure of the Fe+ moiety within the complex resembles
the4D atomic situation (4s13d6), while “4F” means the same with respect
to the4F atomic situation (3d7). c In each entry line, the matrix elements
are〈6A1|HSO|4Ψi〉 and〈6A2|HSO|4Ψi〉, respectively.dOnly unique matrix
elements are shown. The rest can be completed following Tables 1
and 2.eThe matrix elements〈6B1,2|HSO|4Ψi〉 are available from the
authors.f The SOC matrix elements have the same values as in entry
1, but the ordering of the values in each line is switched, in accord
with the selection rules.g The SOC matrix elements have the same
values as in entry 5, but the signs are opposite, and the ordering of the
values in each line is switched, in accord with the selection rules.

Table 4. Selected SOC Matrix Elements (in cm-1) between the6D
and4D, 4F States of Fe+, at the Exit of the Elimination Step

entry state 1 state 2 〈HSO〉r 〈S1 ) 5/2; Ms1k|S2 ) 3/2; Ms2k′〉a,b

1 6A1; 6A2
4D; 4A2 r ) z 〈3/2|3/2〉 ) 53; 0

〈1/2|1/2〉 ) 64; 0

2 6A1; 6A2
4D; 4A1 r ) z c

3 6A1; 6A2
4D; 4B2 r ) x; y 〈5/2|3/2〉 ) -31; 46

〈1/2|3/2〉 ) 10;-14
〈3/2|1/2〉 ) -24; 35
〈-1/2|1/2〉 ) 17;-25

4 6A1; 6A2
4D; 4B1 r ) y; x 〈5/2|3/2〉 ) -90; 46

〈1/2|3/2〉 ) 28;-14
〈3/2|1/2〉 ) -69; 35
〈-1/2|1/2〉 ) 49;-25

5 6A1; 6A2
4F; 4A2 r ) z 〈3/2|3/2〉 ) -5; 0

〈1/2|1/2〉 ) -5; 0
6 6A1; 6A2

4F; 4A1 r ) z 〈3/2|3/2〉 ) 0; 6
〈1/2|1/2〉 ) 0; 7

7 6A1; 6A2
4F; 4B2 r ) x; y 〈5/2|3/2〉 ) -8; 1

〈1/2|3/2〉 ) -6;≈0
〈3/2|1/2〉 ) 3;≈-0
〈-1/2|1/2〉 ) -4;≈0

8 6A1; 6A2
4F; 4B1 r ) y; x 〈5/2|3/2〉 ) 1;-1

〈1/2|3/2〉 ) 1;-1
〈3/2|1/2〉 ) ≈-0;≈0
〈-1/2|1/2〉 ) ≈0;-1

9 6A1; 6A2
4F; 24A2 r ) z d

10 6A1; 6A2
4F; 24B2 r ) x; y 〈5/2|3/2〉 ) 3;-8

〈1/2|3/2〉 ) 3;-6
〈3/2|1/2〉 ) -1; 3
〈-1/2|1/2〉 ) 2;-5

11 6A1; 6A2
4F; 24B1 r ) y; x 〈5/2|3/2〉 ) -7;-8

〈1/2|3/2〉 ) -5;-6
〈3/2|1/2〉 ) 2; 3
〈-1/2|1/2〉 ) -4;-5

a In each entry line, the matrix elements are〈6A1|HSO|4Ψi〉 and
〈6A2|HSO|4Ψi〉, respectively.bOnly unique matrix elements are shown.
The rest can be completed following Tables 1 and 2.c The SOC matrix
elements have the same values as in entry 1, but the ordering in each
line is switched.d The SOC matrix elements have the same values as
in entry 6, but the ordering in each line is switched.
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of the electronic states. In addition, the SOC matrix elements
vary for different species along the reaction coordinate: starting
high at the entrance channel, decreasing along the bond insertion
process, and going to nearly zero at the Fe+ exit channel between
the6D ground state and the4F first excited state. Some of these
patterns are not immediately obvious and require conceptual-
ization. Even though rules for SOC are known in principle,8,9a-d,j

it is not clear how they are precisely manifested in complex
molecular situations of low symmetry, and more importantly
how they are deriVed from the electronic structure of the states.
This is especially true for transition metal reactivity where the
spin states are more complex than the singlet-triplet situations
in organic chemistry. Thus, some reiteration of SOC ideas
would be necessary to create a coherent discussion of the matter.
In the general situation, we need to consider the SOC between

two multiconfigurational wave functionsΨ1(S1;Ms1k) and
Ψ2(S2;Ms2k′) which belong to different spin states,S1 andS2,
and have spin-sublevles (substates) Ms1k and Ms2k′, respectively.
Each wave function is given therefore by the appropriate linear
combination of spin-adapted configurations in eqs 4a and 4b,
where thecI andcJ are real number coefficients of the MCSCF
configurations.

Following the one-electron approximation,8a,b,11a,bthe SOC
Hamiltonian is given by a sum of one-electron contributions,
expressed in eq 5

where theAiK term is an operator which acts only on the radial
part of the wave function, and includes terms defined in eq 2.
SincehSO(i) is a mono-electronic Hamiltonian, it will couple
only those configurationsΦI(S1;Ms1k) andΦJ(S2;Ms2k′) in eq 4
that either have the same electron occupation or differ at most
by a single-electron shift from spin orbital〈µ|to spin orbital|ν〉.
Most of the situations pertaining to the present paper correspond
to the second case. As such, the configuration matrix element
will consist of SOC matrix elements between the spin molecular
orbitals which differ in one-electron occupancy in the two
configurations, i.e.,

where theæ is the space part of the molecular orbital,θ the
spin of the electron which is shifted fromæµ (in ΦI) to æν (in
ΦJ), and theN’s the configuration’s normalization constants
which depend on the identity of the substatesk andk′. Thenkk′
factor is the number of identical orbital terms which are
contributed from the coupling of a given pair of Ms configura-
tions.
The part of the SOC matrix element that carries the symmetry

and substate selectivity involves theL ‚Soperator,8,9a-d,j where
L is the angular orbital momentum operator, whileS is the spin
operator. TheL ‚Soperator can be written as a sum of Cartesian
components, or in terms of ladder operators.8a Thus, the
expectation value of theL ‚S operator will havex, y and z
components in the Cartesian representation or alternately

appropriate “components” in the ladder representation. These
components are expressed in eqs 7a and 7b.

If we index the components by the general subscriptr, we can
write for the r component of the SOC matrix element the
expression in eq 8 which is based on the combination of eqs 6
and 7, and assumes that the dominant SOC terms are mono-
centric.11a Equation 8 specifies ther component of the SOC
matrix element that arises from coupling of substatesk andk′
belonging respectively to two configurationsΦI and ΦJ,
themselves constituents of the spin statesΨ1(S1) andΨ2(S2).

The totalr component will arise from the summation of all the
configurations in the MCSCF wave functions (eqs 4a and 4b).
The atomic constant terms,úK, depend on the effective nuclear
chargeZK* exerted on the valence electrons, and thereby
gauges the strength of any SOCmatrix element which is allowed
by the angular momentum and spin terms in eq 8.
B. Selection Rules.The SOC selection rules derive from

the conditions which produce simultaneously nonvanishing spin,
〈θµ|Sr|θν〉, and orbital,〈æµ|lrK|æν〉, factors.
(1) The Spin Factors,〈θµ|Sr|θν〉. The spin factors, which

are discussed in many sources,8a,b,9a-d yield either a 0 or 0.5
expectation value of spin angular momentum (in units ofp,
dropping signs and complex numbers). Since the spin functions
are eigenfunctions ofSz, the only non-zerozcomponent is when
θµ andθν are identical, i.e., only when the coupled substates
involve the same number ofR andâ spin orbitals and hence
the same Ms quantum number. SinceSx andSy convertR spin
to â spin and vice versa, the nonvanishing spin components
will involve nonidentical spin functionsθµ * θν, i.e., when the
coupled substates differ in their number ofR andâ spin orbitals
such that Ms1k ) Ms2k′ ( 1. Thez andx,y selection rules are
specified in eq 9.

If

If

Since theS( operators are simply linear combinations of the
Sx,y operators, the selection rules are identical in the two
representations.
(2) The Orbital Factors, 〈æµ|lrK|æν〉. For linear molecules,

the orbitals are eigenfunctions of the orbital momentum operator
and it is easier to use the ladder representation, while for
nonlinear molecules the Cartesian representation must be used.
In any representation, the angular momentum expectation values,
〈æµ|lrK|æν〉, are either zero or given bymµν, which is a number
depending on the orbitalsæµ andæν, to be discussed later in
Table 5.

Ψ1(S1;Ms1k) ) ∑
I

cIΦI(S1;Ms1k) (4a)

Ψ2(S2;Ms2k′) ) ∑
J

cJΦJ(S2;Ms2k′) (4b)

HSO) ∑
i

hSO(i); hSO(i) ) ∑
K

AiKL iK‚Si;

AiK ) R2/2(ZK*/RiK
3) (5)

〈HSO〉I,J;k,k′ ) nkk′NIkNJk′cIcJ〈æµθµ|hSO|æνθν〉;
θ ) R and/orâ spin (6)

〈æµθµ|L ‚S|æνθν〉 ) 〈æµ|lx|æν〉〈θµ|Sx|θν〉 +
〈æµ|ly|æν〉〈θµ|Sy|θν〉 + 〈æµ|lz|æν〉〈θµ|Sz|θν〉 (7a)

〈æµθµ|L ‚S|æνθν〉 ) 〈æµ|lz|æν〉〈θµ|Sz|θν〉 +
0.5[〈æµ|l+|æν〉〈θµ|S-|θν〉 + 〈æµ|l-|æν〉〈θµ|S+|θν〉] (7b)

[〈HSO〉r]I,J;k,k′ ) nkk′NIkNJk′cIcJ∑
K

úK〈æµ|lrK|æν〉〈θµ|Sr|θν〉;

úK ) 〈æµ|AiK|æν〉 for r ) x, y, z

(0.5〈æµ|AiK|æν〉 for a ladder term) (8)

Ms1k ) Ms2k′(∆Ms1k,2k′ ) 0); w 〈HSO〉z * 0 (9a)

Ms1k ) Ms2k′ ( 1(∆Ms1k,2k′) ) (1;
w 〈HSO〉x,y; 〈HSO〉( * 0 (9b)
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(a) The Ladder Representation. When the orbitals are
eigenfunctions oflz, then the orbital factor will be non-zero only
if the momentum quantum number,λ, is non-zero and identical
for the two orbitals. The condition will be met only when the
configurations,ΦI andΦJ, as well as their corresponding states
Ψ1 andΨ2, all have the same total angular momentum quantum
numberΛ, as given by eq 10a.
The operatorl+ acts on an orbital by raising its angular

momentum by a unity, while the correspondingl- operator’s
action is precisely the opposite. This means that SOC will be
maintained only if the orbitals and the states differ by a unit of
angular momentum, as expressed in eq 10b.

If

If

(b) The Cartesian Representation.Applying the Cartesian
representation to eq 7a allows us to derive symmetry as well as
orientation rules for the orbitals which are involved in the SOC
matrix element. Table 5 details the transformation properties
of the d-AO’s under the operation of thelx,y,z operators. There
is an analogy to the transformation properties of the p-AO’s.8b,9a-d

The lx,y,z operators act on a Cartesian p-AO in two ways: first
the operator eliminates any p-AO on the same axis as the
operator itself, e.g.,lz|pz〉 ) 0, and second, the operator rotates
the p-AO about the Cartesian axis of the operator, e.g.,lx rotates
functions about thex axis. Consequently, the nonvanishing
angular momentum terms involve cyclic permutations of the
x,y,z axes over the two p-AO’s and the operator, e.g.,〈px|lz|py〉
* 0. Thus, a non-zero angular momentum expectation value
is produced along the normal to the plane defined by a pair of
p-AO’s when they are perpendicularly oriented.
The situation with d-AO’s is given in Table 5.As a general

rule, the d-orbital pairs which create non-zero angular mo-
mentum along a giVen axis inVolVe d-AO’s mutually related by
a rotation about this axis. For example,lx rotates the dxy AO
around thex axis to a dxzAO, and as such, the integral〈dxz|lx|dxy〉
has non-zero angular momentum about thex axis. In contrast,
〈dx2-y2|lx|dxy〉 gives a zero angular momentum, because the two
AO’s are not mutually related by rotation about thex axis.
Symmetry can further assist to classify the angular momentum

expectation values,〈æµ|lr|æν〉 in the Cartesian representation.
Thus, since thelr operators transform as the real rotationsRr

(r ) x,y,z) of the point group,8a,b,9c,jthe expectation values will
vanish unless the direct product of the irreducible representa-
tions, Γ, of orbitals is identical to the representation of the
corresponding real rotationRr (r ) x,y,z) of the point group.
The symmetry selection rules follow in eqs 11a and 11b, in
hierarchy, from the orbital to the state level:

If

If

The orbital level reveals that, only if the electron is allowed
to shift between two orbitals whose symmetry direct product
matches that of one of the real rotations of the point group do
we obtain a component of the SOC matrix element polarized
along the axis of the rotation. This result is a restatement of
the orientation rules stated above (based on Table 5) for getting
a non-zero orbital momentum expectation value from two
d-orbitals.25

(c) The Effect of the Substate Identity. From a physical
aspect, the different Ms values of a givenSspecify the allowed
orientations of the spin vector relative to the principal axis, and
these orientations determine eventually the strength of the
coupling to the angular momentum vectorL which has its own
allowed orientations (specified by(Λ in linear molecules)
relative to the principal axis. As such, the SOC strength will
depend on the identity of the Ms substates. In terms of
electronic structure, the ratios between the SOC matrix elements
of substate pairs (k, k′) will be determined by the corresponding
normalization constants,NIk andNJk′ andnkk′; the latter factor
enumerates the number of identical orbital SOC terms which
are contributed by a given matrix element in eq 8.
The normalization constants are simple counts of the deter-

minants that are required to form a spin-adapted configuration
with a certain Ms value. For a given spin quantum numberS,
the Msk values are given as Msk ) 1/2(nR - nâ) wherenR and
nâ are the numbers ofR and â spins, respectively. The
configuration with the highest Msk value has an all spin-up (R
spins) electronic structure, and as such will be described by a
single determinant wave function. The other configurations with
lower Ms values will be described by an increasing number of
determinants which correspond to the number of ways of
arranging the electrons withR spins andâ spins in the singly
occupied orbitals. The number of determinants for a configu-
ration having a given Msk and typified by thenk number of
singly occupied orbitals isnk!/(nk - nR)!nR!, and the normaliza-
tion constant becomes therefore eq 12a.

Similarly, the factornkk′, in eq 8, depend on the number of
determinant pairs which can contribute SOC terms, and is simply
identical with the number of determinants (or twice that number)
in that configuration described by the minimal number of spin
arrangements; eq 12b for thex,y components and for eq 12c
for thezcomponent. The SOC matrix elements in eq 8 will be
weighted by the product ofN and n, and will thereby be

(25) This result brings to mind the classical analogy invoked by Salem
and Rowland9a to explain the spin inversion which is promoted by SOC,
that the “rotation” of the electron between the orbitals provides the torque
which is required to invert the spin.9a

Table 5. Transformation of d Orbitals Under the Operations oflr
(r ) x,y,z) Operatorsa

lr dz2 dx2-y2 dxy dxz dyz

lx -x3idyz -idyz idxz -idxy i(dx2-y2 -x3dz2)
ly x3idxz -idxz -idyz i(dx2-y2 +x3dz2) idxy
lz 0 2idxy -2idx2-y2 idyz -idxz

a The table entries are values ofli|di〉 in p units.

NIk ) 1/[nk!/(nk - nR)!nR!]
1/2 (12a)

[nkk′]x,y ) [nk!/(nk - nR)!nR!]min (12b)

[nkk′]z ) 2[nk!/(nk - nR)!nR!]min (12c)

[〈HSO〉r]I,J;k,k′/[〈HSO〉r]I,J;l,l′ ) nkk′NIkNJk′/nll ′NIl ′NJl′ )
WIk,Jk′/WIl ,Jl′ (12d)

Λ1 ) Λ2(λµ ) λν * 0 and∆Λ ) 0); w 〈HSO〉z * 0
(10a)

Λ1 ) Λ2 ( 1; λµ ) λν ( 1; w 〈HSO〉( * 0 (10b)

Γ(æµ)XΓ(æν) ) Γ(ΦI)XΓ(ΦJ) ) Γ(Ψ1)XΓ(Ψ2) ) Γ(Rz);

w 〈HSO〉z * 0 (11a)

Γ(æµ)XΓ(æν) ) Γ(ΦI)XΓ(ΦJ) ) Γ(Ψ1)XΓ(Ψ2) ) Γ(Rx,y);

w 〈HSO〉x,y * 0 (11b)
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diminished. It is convenient then to group these terms as a
weighing factor,WIk,Jk′, so that the ratio of two SOC matrix
elements, for pairs of substates (kk′ andll ′), can can be predicted
as given by eq 12d.
It is apparent that the ratio in eq 12d is a constant which

does not depend on the identity of the states but is determined
solely by the number of equivalent ways that are available for
the configurations to arrange the spins (number of determinants)
in the singly occupied orbitals.Thus, the distribution of the
spin subleVels oVer the aVailable arrangements limits the
number of matched situations which follow the selection rules
and down sizes thereby the SOC between the two configurations,
in proportion to the aVailable ways for spin distribution.
C. Application of the Selection Rules to the Species in

the Reaction (Eq 1). Table 6 summarizes all the selection rules
derived above. These rules and the d orbital transformations
in Table 5 will serve as a basis to rationalize the computational
results in Tables 1-4.
(1) General Symmetry, Angular Momentum, and Spin

Considerations. The species in Figure 1 and Scheme 1 belong
to theC∞V, C2V, andCs point groups. Since the ground sextet
state in these groups belongs to the totally symmetric repre-
sentation (with the exception of CPwhich is a linear combination
of 6A1 and 6A2), it follows that this state can be coupled to
quartet states which possess the same symmetry as the real
rotations for the respectiVe point group. Using character tables
and Table 6, we can make predictions about the patterns of SOC
in the various species, as depicted in Figure 3, which specifies
the state pairs which are coupled via thez or x,y components
of SOC.
At the bottom part of Figure 3, we show the patterns of the

substate coupling based on the spin selection rules. The match-
up of the substates is shown by lines that connect the spin
sublevels; no energy ordering is meant by the vertical placement
of the sublevels. Thus, in Figure 3a thez component that
couples substates of the same Ms leaves the Ms) 5/2 substates
of the sextet state uncoupled, while in Figure 3b thex,y
components are seen to couple all the substates which differ
by (1 unit of Ms. These general predictions are in line with
the computational results in Tables 1-3.
The ratios of the SOC matrix elements for each pair of

substates are obtained by use of eq 12d and are indicated in
Figure 3 above the lines connecting the substate. As an
example, consider the coupling of Ms1 ) 3/2 to Ms2 ) 1/2 in
Figure 3b. The sextet configuration with Ms1 ) 3/2 has 5
possibilities to distribute fourR spins among 5 singly occupied
orbitals, and as such is described by 5 determinants. The quartet
configuration with Ms2 ) 1/2 has 3 possibilities to distribute
the two R spins over three orbitals and has therefore 3
determinants. Each of the 3 determinants of the quartet state
finds a match, which differs by a single electron shift, among

the 5 determinants of the sextet state. Therefore the SOCmatrix
element will be weighted by the factor 3/x15. The ratios
between the unique matrix elements are given underneath the
substate-coupling diagrams in Figures 3a and 3b, and these ratios
reproduce precisely the computed ratios of the SOC matrix
elements in Tables 1-3.
(a) Orbital Effects on SOC in FeO+. Having predicted the

general trends of the computational data, we turn to analyze
orbital related features of the specific systems. For FeO+, in
C∞V symmetry, the states are angular momentum states and
therefore the SOC selection rules must follow the angular
momentum rules (see Table 6). It is seen from Figure 3 that
thez component of the SOC couples the ground state6Σ+ with
the4Σ- state which possess the same total angular momentum,
while thex,y components couple6Σ+ with the4Π states, which
differ by one unit of angular momentum with respect to the
sextet state. According to the angular momentum selection rules
(Table 6) no other state can couple to6Σ+. These predictions8a,b

are indeed followed by the computational results in Table 1.
To further understand the difference between the efficient

6Σ+/4Π and6Σ+/4Σ- couplings as opposed to the zero6Σ+/4Φ
coupling, we must inspect the orbital relationships which
promote the SOC matrix elements. In the angular momentum
representation, the fundamental6Σ+ (6A1 in C2V) configuration
is described by the orbital occupancy in Scheme 2 using the
real representation of the orbitals along with theirC2V symmetry
labels and Cartesian assignments. Expansion of the4Π and4Φ
fundamental configurations into the configurations based upon
the real orbitals generates in each case four configurations which
belong to two different symmetry species4B1 and4B2 and which
are shown in Scheme 2. Since the two quartet states,4Π and
4Φ, are made up from the same symmetry species,symmetry
analysis by itself is insufficient, and we must therefore rely on
the angular momentum realtionships in Table 5.

Table 6. Selection Rules for Non-Zero Spin-Orbit Coupling
(SOC) between States with Different Spin SituationsΨ1(S1,Ms1k)
andΨ2(S2,Ms2k′)

〈HSO〉r

spin
selection
rule

angular
momentum
selection rulea

symmetry
selection ruleb

z ∆Ms) 0 ∆Λ ) 0; Γ(Ψ1) X Γ(Ψ2) ) Γ(Rz)
λµ ) λν * 0 Γ(æµ) X Γ(æν) ) Γ(Rz)

x,yc ∆Ms) (1 ∆Λ ) (1; Γ(Ψ1) X Γ(Ψ2) ) Γ(Rx, Ry)
(λµ ) λν ( 1) Γ(æµ) X Γ(æν) ) Γ(Rx, Ry)

a λµ, λν refer to the orbital angular momenta of orbitalsæµ,ν; Λ refers
to the total angular momentum.b æµ andæν are the orbitals which differ
in one electron occupancy in the configurations belonging toΨ1 and
Ψ2, respectively.c The same rules apply to the ladder components (see
e.g., eq 10b).

Figure 3. On top are state pairs that are coupled by SOC according to
the symmetry rules, for thezcomponent (a) and for thex,y components
(b). At the bottom are schematic substate coupling diagrams. The
weighing factors of the substate coupling (eq 12d) are shown above
the corresponding coupling lines. The ratios of these weighing factors
are displayed beneath each diagram (these ratios should be compared
to the ratios of the SOC matix elements of different substates in Tables
1-4).
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Consider the SOC between6Σ+ and the two4B2 components
in Scheme 2. Each one of the4B2 determinants differs from
the 6Σ+ determinant by a single electron shift and as such is
coupled with6Σ+ via the respective MO matrix element. After
resolving the spin expectation values (0.5) and including all the
constants from eq 8, the SOC matrix elements become eqs 13a
and 13b.

Theπxzandπyzorbitals are given as combinations of the iron’s
d AO’s and the oxygen’s p AO’s, eq 14, and the 1δ orbitals
are pure d AO’s, dxz and dx2-y2.

Using the transformation of d AO’s in Table 5, only the first
term of both eqs 13a and 13b is non-zero, and given by:

Summation of the above terms leads to zero SOC with the4Φ
state, while the difference of the terms for the4Π state gives a
non-zerox component of the SOC matrix element, as sum-
marized in eqs 16a and 16b, where the factor 2-1/2 is the
normalization constant of the4B2 state.

Turning back to Scheme 2, the4B1 components of4Π and
4Φ are linear combinations of (δx2-y2)2δxy

1πyz
13σ1 and

δxy2(δx2-y2)1πxz
13σ1. These4B1 components are generated from

the6Σ+ state by electron shifts fromπxz to δx2-y2 and fromπyz

to δxy, which by analogy to the foregoing analysis (eqs 14-16)
lead to the d-AO matrix elements,〈dxz|ly|dx2-y2〉 and〈dyz|ly|dxy〉.
These d-AO relationships lead toy components of the angular
momentum, which again add up for the4Π state and cancel
out for the4Φ state.

Consider now a fundamental4Σ- configuration, the one which
pairs up theπ electrons in the angular momentum representation.
The corresponding real representation is denoted in Scheme 2
as 4A2-1, and its two components are generated from the
fundamental configuration of6Σ+ by single electron shifts from
πxz to πyz and vice versa. Based on Table 5, the dxz-dyz
relationship generates az component of the SOC. Similarly,
the px, py AO’s on the oxygen generate az component of the
angular momentum.9 A second fundamental configuration
which contributes to4Σ- is shown in Scheme 2 as4A2-2. This
configuration has a smaller coefficient in the MCSCF wave
function, but its intrinsic SOC matrix element with the sextet
configuration is large due to the dxy- dx2-y2 relationship (Table
5). Together, the two matrix elements, in eqs 17a and 17b,
contribute to the significantz component of SOC in Table 1.

The above examples demonstrate that the angular momentum
and symmetry selection rules are not redundant, but lead to
complementary insight.
(b) Orbital Effects on SOC in FeO+-H2 Structures. The

interaction of FeO+ with H2 is attended by orbital delocalization
and increased MCSCF mixing, especially for the quartet states
of 4CR and4TS. The corresponding sextet state is still dominated
by a single open-shell configuration (c g 0.6) akin to the6Σ+

parent configuration of FeO+. This fundamental configuration
is shown in Scheme 3 (1-3) for the CR and TS species.
Relying on these configurations, the SOC patterns (refer to

Table 2) can be related to their FeO+ ancestry. As indicated in
4 in Scheme 3, the4B2 configurations of CR are generated from
the 6A1 configuration by shifting an electron from 2πxz to δxy,
and contributing thereby anx component of SOC,26 much like
the FeO+ case discussed in eq 13a. Similarly, shifting an
electron from 2πxz to δx2-y2 generates the4B1 state, leading
thereby to ay component of SOC as in the FeO+ case in eq
15b. Finally, an electron shift from 2πxz to 2πyzas well as from
3σ to δxy generates the4A2 state. Since the 3σ orbital in 6CR is
a hybrid with a dx2-y2 character (and dz2 of course), the latter
electron shift involves an angular momentum term,〈dxy|lz|dx2-y2〉.
These orbital factors are responsible therefore for generating a
z component of SOC, by analogy to the situation in FeO+

described in eqs 17a and 17b.
In the 4CR cluster (note the change in axes),2 in Scheme 3,

the major 4A′′ configurations (5) are generated from the
fundamental sextet configurations,6A′, by shifting electrons
from 2πxy(a′) to δyz(a′′) and from 3σ to δyz(a′′). These two shifts
are responsible for thex and y components of the SOC, by
analogy to the4B1,2 states in FeO+.
The fundamental6A′ configuration for the two TS’s is shown

in 3 in Scheme 3. Electron shifts, either fromδxz(a′′) to 3σ or
from 3σ to 2πyz(a′′) and vice versa (6), generate the4A′′
configurations and lead tox andy components of the SOC.
(c) Variations in the Value of the SOC Matrix Element

Along the Reaction Path. The final feature of the calculation
that requires understanding is the variation of the SOC matrix
element along the reaction pathway. Recalling that the states
are MCSCF wave functions, eqs 4a and 4b, we can express the
total SOC matrix element (in absolute magnitude) for a
componentr in eq 18,

(26) The secondary configurations involve excitations from the bonding
MO’s to the nonbonding ones. The SOC matrix elements between the
secondary configurations mimic those between the main configurations.

Scheme 2

〈6A1(
6Σ+)|HSO|4B2(I)〉 ) 0.5(úFe+ úO)[〈πxz|lx|δxy〉 -

i〈πxz|ly|δxy〉] (13a)

〈6A1(
6Σ+)|HSO|4B2(II) 〉 ) 0.5(úFe+ úO)[〈πyz|lx|δx2-y2〉 -

i〈πyz|ly|δx2-y2〉] (13b)

2πxz) cFe(dxz) - cO(px); 2πyz) cFe(dyz) - cO(py) (14)

〈6A1(
6Σ+)|HSO|4B2(I)〉 ) 0.5cFeúFe〈dxz|lx|dxy〉 ) 0.5cFeúFe

(15a)

〈6A1(
6Σ+)|HSO|4B2(II) 〉 ) -0.5cFeúFe〈dyz|lx|dx2-y2〉 )

-0.5cFeúFe (15b)

〈6A1(
6Σ+)|HSO|4B2(

4Φ)〉x ) 0 (16a)

〈6A1(
6Σ+)|HSO|4B2(

4Π)〉x ) 2-1/2cFeúFe (16b)

〈6A1(
6Σ+)|HSO|4A2-1(

4Σ-)〉z ) 0.5(c2FeúFe+ c2OúO) (17a)

〈6A1(
6Σ+)|HSO|4A2-2(

4Σ-)〉z ) úFe (17b)
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where we have already considered the nonvanishing spin factor
(0.5). TheWIk,Jk term is the Ms-dependent weighing factor (eq
12d). In the present case, where state 1 is the sextet, the
fundamental open-shell configuration has one dominant coef-
ficient. To simplify we assume a single sextet configuration
with coefficientcI ) c0.
The MO’s in the angular momentum expectation values, in

eq 18, above involve in principle contributions from Fe, O, and
H, as in eq 19.10a

Since the 1s orbital of H does not contribute to the angular
momentum expectation value, the final SOC expression becomes
eq 20. Here, themd parameters are the coefficients of the
angular momentum expectation values in Table 5, while the
cc′ factors are products of the MO coefficients in eq 19 for a
given atom.

Equations 19 and 20 provide a basis for understanding the
variation of SOC along the reaction pathway. Whenever one
or both MO’s, eq 19, are pure d orbitals, the (cc′)O product in
eq 20 vanishes. In all other cases, the oxygen terms contribute
to the SOC matrix element, but to a lesser extent than the iron
due to the ratio of the atomic constantsúFe/úO of ∼3. Thus, to
a rough approximation, the SOC matrix element is dominated
by the iron-centered terms, and as such will be determined by
the variation of two main factors: (a) the delocalization of the
MO’s as accounted for by the (cc′)FeMO coefficient term, and
(b) the MCSCF coefficient,cJ, of the quartet substate. The more
extensive the orbital mixing between the FeO+ and H2 moiety,
the smaller the coefficient on the Fe gets. Similarly, the more
extensive the orbital mixing, the more correlated the quartet
wave function becomes, and as such its individual MCSCF
coefficients,cJ, become smaller. Since the number of configu-
rations which differ from the fundamental sextet configuration
by single electron shifts is fixed, the increased delocalization
of the MCSCF wave function means necessarily a smaller SOC
matrix element in eq 20.

At the reactant entrance of Figure 1, FeO+ has a sextet state
described by a dominant configuration (c0 ) 0.75), and a quartet
state dominated by a single configuration (cJ ) 0.5). As such,
FeO+ possesses significant SOC matrix elements, given by the
coefficient-weighted atomic constant of Fe+ (see eq 16:cFeúFe);
the largest of the matrix elements is∼50% of the atomic
constants (407-416 cm-1). At the6CR cluster geometry, there
occurs some orbital mixing with H2, accompanied by increased
configuration mixing. Thus, the coefficients (eq 20)c0, cJ, and
cFeall decrease, and the SOCmatrix element is decreased further
reaching at most 30% of the Fe+ atomic constant. At the4CR

geometry where the mixing continues to increase, the SOC
matrix element further decreases. This trend goes on at the TS
geometries where the bond making and breaking becomes
extensive. The lowest SOC value reaches 4-15% of the atomic
constant at the6TS geometry which involves the highest degree
of bond distortion (Scheme 1). Our analysis suggests that the
trend will peak at the geometries of the insertion products,4,6I
(Figure 1), where the H2 molecule adds to FeO+ and forms two
new bonds Fe-H and O-H, both of which are expected to
delocalize the orbitals and decrease the contributions of the Fe
and O atoms to the SOC matrix elements.
Starting with the insertion intermediate, H2O elimination

begins and the orbitals get increasingly less delocalized until
they eventually localize on the Fe+ and H2O fragments.
Nevertheless, Table 3 shows that the SOC between the sextet
ground state and the lowest quartet state of the CP cluster are
small or virtually zero (entries 1,2 and 5,6). To understand the
reason, we need to consider the effective states which describe
the Fe+ moiety within the cluster. For the sextet ground state
of the cluster,6A1,2, the Fe+ moiety is basically in a 4s13d6

situation, as in the ground state of free Fe+, while for the quartet
state,4A1,2, the constituent of the Fe+ moiety is some mixture
of the 4F(3d7) and4D(4s13d6) states.24

Consider first the realistic situation where the major atomic
constituent of Fe+ in 4CP is the4F-like (3d7). In this case, the
6CP-4CP SOC will resemble the6D(4s13d6)-4F(3d7) SOC in
the atomic state. These terms arise from a shift of an electron
from a 4s to a 3d orbital, and hence contribute zero SOC, as is
indeed reflected from entries 5 and 6 in Tables 3 and 4.
Accordingly, we expect a very small SOC at the SI junction
corresponding to6CP-4CP intersection.
Consider now the situation, which is encountered in our

computations, and in which the dominant Fe+ constituents in
4CP are4D-4s13d6 types. In this case, the6CP-4CPSOC should
resemble the6D-4D SOC in the atomic state. Comparison of
the SOC terms in the cluster with the atomic ones (6A1,2-4A1,2

Scheme 3

|[〈HSO〉r]1,2| ) 0.5∑
I;J

WIk,Jk′cIcJ∑
K

úK〈æµ|lrK|æν〉 (18)

æµ ) cFedrs + cOpr + cH1s; æν ) c′Fedrs + c′Opr + c′H1s
(19)

|[〈HSO〉r]1,2| ) 0.5c0∑
J

W0k,Jk′cJ[md(cc′)FeúFe+ (cc′)OúO];

md ) 1,x3, or 2 (20)
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in entries 1,2 in Table 3 with the same entries in Table 4) shows
the anticipated similarity in the SOC values. Note that even
though the6D-4D SOC is not zero, it is nevertheless only 20%
of the atomic constant, a fact that traces to the common 4s13d6

electronic structure of6D and4D, due to the many determinants
required to describe the low-spin situation. Thus, the resulting
6D-4D SOC matrix element will involve a sum of terms
weighted by small weighing factors (eq 20), and which occur
in opposite signs (as verified by us for6A1,2-4A1,2), leading
thereby to small SOC.
In summary, since the calculations of Rossi et al.24 show that

the4F term dominates the quartet states of Fe+‚‚‚OH2, the SOC
matrix elements should be very small, thus closer to the values
in entries 5 and 6 in Table 3. Past the cluster, the sextet-
quartet SOC in Fe+ involves the state pair6D-4F and the SOC
matrix elements and will be virtually zero, as in entries 5 and
6 in Table 4.
(d) Spin Inversion Probabilities for the Reaction. The

essence of the above discussion is pictured in Scheme 4, which
uses the variation of the maximal SOC matrix element along
the reaction pathway. Thus, the SOC matrix element between
the sextet and quartet states is largest at the FeO+ reactant, and
decreases gradually toward the Fe+ product channel. Since the
sextet and quartet states of FeO+ are well-separated,22 the first
SI junction which is available for spin flip and formation of
the quartet insertion intermediate,4I, occurs only later; some-
where in the region of the clusters and TS’s of the insertion
step (Figure 1). A second SI junction occurs at the onset of
the elimination step near the6CP cluster. As seen from Scheme
4, the sextet-quartet SOC matrix elements in the potentially
available second SI region are quite small. Thus already at the
outset it is clear that the probabilities for crossover at the SI
junctions cannot be large, and will therefore hamper the
efficiency of the bond activation process.
A crude estimate of these probabilities is possible using the

Landau-Zener27 treatment, which is often employed for similar
purposes.10i-l Even the Landau-Zener treatment cannot be
anything but an approximately qualitative one due to various
factors as detailed below. As such, we shall not dwell on the
numerical values, but aim to derive insight and qualitative trends.
The Landau-Zener equations for the probability of single

(P′) and double (P′′) passes through the SI junction are shown
in eqs 21a and 21b.

Here, SOC is the matrix element between the two spin situations,
V is the effective velocity of passing through the crossing point,
and the|F1 - F2| term is the difference in the slopes of the two
intersecting surfaces at the crossing point.
The SI region for the bond insertion step is in between the

clusters and the transition states. Without an accurate location
of the crossing point (energies are at the CASPT2 level2e), it is
reasonable to look at the matrix elements for all these species
as though they represent the matrix element at crossing points.
Since the states within the sextet and quartet manifolds are
generally well-separated near the SI junction of bond insertion,
we can use for each spin situation a single spatial state.
Assuming that the substates of a given spin situation are
thermally averaged, then the effective SOC matrix element
between two states is the root-mean square of the sum of matrix

elements over substates (k, k′), and over thex,y,z components
of the SOC operator. All these are divided by the statistical
factors,9b as shown in eq 22. Thus, eq 22 will not allow us to
consider substate specificity although such effects may be
anticipated from the matrix elements in Table 2.

Since the crossing point is not available, the slopes of the
two states have to be approximated. A large slope difference
is expected, since both experiment2a,c,dand theory2e show that
the sextet state rises steeply from the6CR cluster toward the
6TS, while the quartet state has a flat surface between the
respective quartet species. Using the CASPT2 energies of the
Berlin group2eand considering that the effective coordinate that
leads to the bond insertion TS’s is the H- - -H stretch coordinate,
we obtain a slope difference of 89.4 kcal/(mol Å). Calibration
of the sextet and quartet barriers28 by the experimentally
estimated ones leads to a slope difference of 72.34 kcal/(mol
Å). To be on the safer side, we also have used lower values of
down to 10 kcal/(mol Å). The relative velocity of the two
reactants is evaluated from the sum of translational energies of
the two reactants at 300 K. All these estimates will give us a
range of probabilities, not necessarily a drawback considering
the qualitative nature of the treatment.
Using eq 22 to calculate the effective SOC interactions

between the sextet and quartet states leads to values (in cm-1)
of 69, 41, 33, and 39 for the geometries defined by the6CR,
4CR, 6TS, and4TS species. Since the probabilities vary in
proportion to the square of the matrix element, the highest
probability is obtained assuming a crossing point near the
6CR species, while the smallest probability occurs near the
6TS species. Taking an average of these matrix elements
along with the slope difference of 72.34 kcal/(mol Å) leads to
average passage probabilities of 4.3× 10-3 for a single pass
and 8.4× 10-3 for a double pass, while for a slope difference
of 20 kcal/(mol Å), the corresponding probabilities were 1.52
× 10-2 to 3.0× 10-2. Further decrease of the slope difference
to 10 kcal/(mol Å) changes the average probabilities to 3.0×

(27) Zener, C.Proc. R. Soc. London, Ser. A1932, 137, 595;1933, 140,
1174.

(28) At the CASPT2//DFT level used in ref 2e the quartet state’s energies
for FeO+ are overestimated relative to the sextet states by ca. 7 kcal/mol.
Applying this factor to all the quartet surface in ref 2e gives an energy of
-1 kcal/mol for the4TS relative to the reactant onset in Figure 1 here.

(29) For stability trends in Fe+/RH clusters see ref 1.
(30) Ryan, M. F.; Fiedler, A.; Schro¨der, D.; Schwarz, H.J. Am. Chem.

Soc.1995, 117, 2033.
(31) Dillinger, B.; Hochstrasser, R. M.; Smith, B. A., IIIJ. Am. Chem.

Soc.1977, 99, 5834.
(32) Leung, M.; El-Sayed, M. A.J. Am. Chem. Soc.1975, 97, 669.

P′12 ) 1- y; y) exp{-4π2(SOC)2/hV|F1 - F2|]} (21a)

P′′12 ) 2y(1- y) (21b)

Scheme 4

SOC1,2) {[1/(2S1 + 1)(2S2 + 1)][∑
k;k′

(〈HSO〉k,k′)x
2 +

〈HSO〉k,k′)y
2 + (〈HSO〉k,k′)z

2}1/2 (22)
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10-2 to 5.9× 10-2 and does not affect the ballpark figures of
low probabilities in the range of 6× 10-2 to 4× 10-3. Using
the highest single SOC matrix element between the sextet
substate with Ms) 5/2 and the quartet substate with Ms) 3/2
(Table 2, entry 1) leads to higher probabilities of the order of
0.11-0.46.
The range of SI probabilities we generated is not low enough

to rule out the effect of energetic or entropic factors on the
observed sluggish efficiencies of the reaction. Nevertheless,
the calculations show that the SI factor will have a significant
influence on the efficiency of bond activation. The probability
of SI is sensitive to the SOC matrix element, and the highest
probability in the SI region is nearer to the6CR cluster or even
closer to the reactant end, FeO+, provided an SI junction can
be achieved there.
The second SI junction in Figure 1 occurs en route to the

6CP cluster. Since the6A1,2-4A1,2 state separation is small (see
footnote 58 in ref 2c), the SI junction is possibly very near the
cluster. As argued above our calculated SOC matrix elements
for this cluster (entries 5, 6 in Table 3) are very small. Even
the single largest matrix element in Table 3 does not predict a
probability higher than∼10-2 for the passage from the insertion
intermediate to the6CP cluster.
(e) Correlation of an SI-Controlled Scenario with Experi-

mental Data. Since the experimental data2c,d as well as the
computational data2e,3suggest that the4TS on the quartet surface
is likely to be below the energy asymptote of the reactants,28 a
reasonable approach would be to assume a SI-controlled
reactivity and to try and examine this assumption in the light
of the experimental data.
Let us commence with the bond insertion step and make

reference to the species in Figure 1. The FTICR study of the
Berlin group2a shows that a thermalized FeO+ generates only
Fe+ (presumably also H2O), as required by the limiting
exothermicity factor under thermalized conditions. The ob-
served rate constant of 1.6× 10-11 cm3/(s molecule) is slightly
higher than the one measured by the Utah group,2c 1.5× 10-12

cm3/(s molecule), both being two to three orders of magnitude
lower than the collision rate constant (kL ) 1.6× 10-9 cm3/(s
molecule),33 and could be accounted for by using the lower end
of our SI probabilities. This does not rule out, however, a SI-
controlled situation with a contribution of other kinetic bottle-
necks. The observation of the Berlin group2a,33that the reactions
of FeO+/H2(D2) exhibit virtually no kinetic isotope effect (KIE)
may originate in the effect of increased lifetime of the
FeO+- - -D2 cluster in comparison with its hydrogen isotopomer
which offsets the KIE.2a However, an alternative explanation
is that the lack of KIE reflects in fact an SI-controlled process
which is not affected by isotopic substitution. With kinetically
excited FeO+, both groups observed an initial decrease of the
reaction efficiency, followed by an increase of the efficiency
as the kinetic energy increases.2a,c This behavior was ascribed
to a barrier on the sextet surface. The experimentally
determined2c,d value of the barrier is 0.6-0.75 eV above the
reactants, in reasonable accord with the computational results
of the Berlin group in Figure 1 (see6TS in Figure 1).2e Thus,
at low kinetic energy the reaction is constrained to pass through
the SI junction, and the efficiency decreases as the relative
kinetic energy of the reactants increases in accord with a
nonadiabatic SI-controlled process. At higher excitation ener-
gies the system has sufficient energy to pass along the sextet
surface, cross the barrier (6TS), and slide to the sextet product

cluster (6CP) in a spin-conserving manner. This is precisely
the scenario deduced by the Utah group.2c,d Thus, the experi-
mental trends follow a SI-controlled scenario, albeit alternative
explanations do exist.
The assumption of a SI-controlled bond insertion step enables

us to make some verifiable predictions. Thus, as long as the
SI junction for the bond insertion step is located in the region
between the clusters, CR, and the transition states, TS’s, the
probability for crossover will be low. Any factor which shifts
the SI junction closer to the FeO+ reactant will increase the
probability of crossing from the sextet surface to the quartet
bond insertion intermediate, and hence will improve the
efficiency of bond activation. One obvious factor that controls
the location of the SI junction is the stability of4CR, the quartet
cluster. It is anticipated then that as the cluster’s stability
increases, the SI junction will move to an earlier position and
be closer to the FeO+ reactant limit where SOC is significant,
resulting thereby in improved reaction efficiency.
Table 7 shows some data taken from a recent review by the

Berlin group.1 It is seen that the reaction efficiency for FeO+

activation reactions changes from 1% with H2 to 20, 50, and
100% with alkanes CnH2n+2 (n) 1-3) of increasing size. This
increase of efficiency correlates with the stability of the
FeO+- - -RH quartet cluster.2e,3,29 The same correlation is
observed for CoO+ and NiO+.1,2d While this increase of
reactivity may be ascribed to the increased lifetime of the
clusters, a plausible alternative is that this is an outcome of
shifting the SI junction closer to the reactant end where the
SOC factors are larger. The lifetime factor may well assist the
crossing of the SI junction by allowing many passes within the
lifetimes of the4,6CR clusters.
Consider now the product channel, where the SOC terms

reach their minimum. Starting from Fe+ and D2O, Armentrout
et al.2c showed that the4F excited state of Fe+ leads to a more
efficient reaction than the6D ground state by a factor of 200.
Furthermore, FeO+ could not be observed among the products
even though products of higher endothermicity were generated.
These findings accord with the SOC results, that the very small
sextet-quartet SOC at the6CP-4CPSI junction (Figure 1) does
not permit the interconversion of the different spin situations.
The results lend support to Armentrout’s conclusion,2c that the
peculiar behavior reaction of Fe+ with H2O (D2O) is due to
extremely inefficient6D-4F mixing, and show that this poor
SOC is rooted in the electronic structures. Thus, since the one-
electron shift, from 4s13d6 for 6D to 3d7 for 4F, is of the sf d
type, the respective SOC is zero.
The most diagnostic role of the SI junction is at the M+ exit

channel, where differences in the product distributions can be
expected for cases where M+ has a 4s13dn ground state (Fe+,
Mn+), in comparison with cases where M+ has a 3dn ground
state (Ni+, Co+).1 This difference is best illustrated in the
reactions of MnO+(5Σ+,5Π) that undergoes a spin-conserving

(33) Schro¨der, D.; Schwarz, H.; Clemmer, D. E.; Chen, Y.; Armentrout,
P. B.; Baranov, V. I.; Bohme, D. K.Int. J. Mass Spectrom. Ion ProcessIn
press.

Table 7. Reaction Efficiencies (Φ) and Relative Yields of
Productsa

% yield

reactants Φ (%) MOH+/H(R) M+/ROH(HOH)

1. FeO+/H2 1 0 100
2. FeO+/CH4 20 57 41
3. FeO+/C2H6 50
4. FeO+/C3H8 100
5. CoO+/CH4 0.5 100
6. NiO+/CH4 20 100
7. MnO+/CH4 40 100 <1
8. MnO+/H2 15 75 25

aData from ref 1.
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bond insertion30 but must cross an SI junction at the exit
channel3 to produce Mn+ (7S) and ROH. Entries 7 and 8 in
Table 7 show that while MnO+ is an efficient activator, in accord
with its spin conserving bond insertion step, it gives very small
yields of H2O and CH3OH, in accord with the expected small
SOC terms between the high- and low-spin states of the
Mn+- - -ROH cluster at the exit channel. Thus, the MnO+/RH
system bypasses the SI junction and gives rise to the MnOH+/
R• product which is spin conserving.3,30 In contrast, CoO+ and
NiO+, which possess a SI junction for bond insertion, do not
have to invert spin at the elimination step because the ground
state of the corresponding metal ions is 3dn. Indeed, entries 5
and 6 in Table 7 show that CoO+ and NiO+ undergo inefficient
bond activation (low overall efficiency), but nevertheless
produce only the M+/ROH products. As may be seen from
entry 2, the reaction of FeO+ with CH4 is quite efficient, but
nevertheless, the yield of Fe+/CH3OH is only 41%, in good
analogy with the MnO+/RH cases.

Concluding Remarks

The process FeO+ + H2 f Fe+ + H2O (eq 1) involves two
spin inversion (SI) junctions between sextet and quartet states:
near the FeO+/H2 cluster at the entrance channel, and near the
Fe+/H2O cluster at the exit channel.Due to the large barrier
(g18 kcal/mol) on the sextet surface, the only potential for bond
actiVation is the crossoVer to the quartet surface which affords
a low-energy path for the bond actiVation. As such, the oVerall
reaction efficiency is limited by the SOC between the two spin
states at the SI junctions.
An important requirement for SOC is that the two spin states

must differ by a shift of an electron between two iron orbitals,
none of which is an s orbital, which differ by their mutual
orientations (Tables 5 and 6). Using this guideline, it is
anticipated and corroborated by computations that the SOC will
be gradually reduced from its initial value at the reactant extreme
(for FeO+), due to orbital mixing and delocalization of the iron
orbitals during the bond insertion step. At the elimination step

which starts with the Fe+- - -OH2 cluster, the SOC terms are
small and should diminish to virtually zero for the6D and4F
states of Fe+, due to the fact that their electronic structures are
4s13d6 and 3d7, respectively. It follows, therefore, that the
electronic structure of the spin states down sizes the SOC matrix
elements,and eVen though Fe+ has a large SOC constant, this
does not carry oVer to the SOC between the sextet and quartet
states along the oxidation process.
Assuming that the overall process is dominated by the SI

junctions forms a basis for understanding the experimental
findings of Schwarz et al.1,2a,e,30and Armentrout et al.,2c,d and
for verifying their basic conclusions.33 Based on the under-
standing of the SOC patterns, predictions are made for analogous
processes, MO+ + RH f M+ + ROH (M ) Mn, Fe, Co, Ni;
R ) H, alkyl), and compared with appropriate experimental
data.1,2

Our SOC computations as well as the selection rules suggest
that both reactivity and product distribution should be substate
selective. The fact that such selectivity is observed among the
spin substates of triplet states of organic molecules31,32suggests
that such a selectivity may play a role in the reactions of
transition metal species.
Clearly an assumption of an SI-controlled process is a gross

oversimplification, and a proper treatment of the dynamics of
the process is required. Nevertheless, the kinetic role of the SI
junction appears evident, and should form an incentive for
further investigation of the effects of spin inversion in analogous
systems.
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